SEMI-SIMPLICITY IN INFINITE-DIMENSIONAL LIE GROUPS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Dimensional Lie Groups

Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...

متن کامل

Regular Infinite Dimensional Lie Groups

Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...

متن کامل

Infinite-Dimensional Lie Groups and Algebras in Mathematical Physics

We give a review of infinite-dimensional Lie groups and algebras and show some applications and examples in mathematical physics. This includes diffeomorphism groups and their natural subgroups like volume-preserving and symplectic transformations, as well as gauge groups and loop groups. Applications include fluid dynamics, Maxwell’s equations, and plasma physics. We discuss applications in qu...

متن کامل

Description of Infinite Dimensional Abelian Regular Lie Groups

It is shown that every abelian regular Lie group is a quotient of its Lie algebra via the exponential mapping. This paper is a sequel of [3], see also [4], chapter VIII, where a regular Lie group is defined as a smooth Lie group modeled on convenient vector spaces such that the right logarithmic derivative has a smooth inverse Evol : C(R, g) → C(R, G), the canonical evolution operator, where g ...

متن کامل

Chern–weil Theory for Certain Infinite-dimensional Lie Groups

Chern–Weil and Chern–Simons theory extend to certain infinite-rank bundles that appear in mathematical physics. We discuss what is known of the invariant theory of the corresponding infinite-dimensional Lie groups. We use these techniques to detect cohomology classes for spaces of maps between manifolds and for diffeomorphism groups of manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics

سال: 1963

ISSN: 1883-2172,0373-6385

DOI: 10.2206/kyushumfs.17.164